(x+3)/(x^2-x-6)+(x-2)/(2x^2-x-1)=9

Simple and best practice solution for (x+3)/(x^2-x-6)+(x-2)/(2x^2-x-1)=9 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+3)/(x^2-x-6)+(x-2)/(2x^2-x-1)=9 equation:



(x+3)/(x^2-x-6)+(x-2)/(2x^2-x-1)=9
We move all terms to the left:
(x+3)/(x^2-x-6)+(x-2)/(2x^2-x-1)-(9)=0
Domain of the equation: (x^2-x-6)!=0
We move all terms containing x to the left, all other terms to the right
x^2-x!=6
x∈R
Domain of the equation: (2x^2-x-1)!=0
We move all terms containing x to the left, all other terms to the right
2x^2-x!=1
x∈R
We calculate fractions
((x+3)*(2x^2-x-1))/((x^2-x-6)*(2x^2-x-1))+((x-2)*(x^2-x-6))/((x^2-x-6)*(2x^2-x-1))-9=0
We calculate terms in parentheses: +((x+3)*(2x^2-x-1))/((x^2-x-6)*(2x^2-x-1)), so:
(x+3)*(2x^2-x-1))/((x^2-x-6)*(2x^2-x-1)
We multiply all the terms by the denominator
(x+3)*(2x^2-x-1))
Back to the equation:
+((x+3)*(2x^2-x-1)))
We calculate terms in parentheses: +((x-2)*(x^2-x-6))/((x^2-x-6)*(2x^2-x-1)), so:
(x-2)*(x^2-x-6))/((x^2-x-6)*(2x^2-x-1)
We multiply all the terms by the denominator
(x-2)*(x^2-x-6))
Back to the equation:
+((x-2)*(x^2-x-6)))

See similar equations:

| 40•3x=180 | | 3x/5-8=1x | | 6x+8x-36=3x+1 | | 1x-5=-7+5 | | 2(n-1)+4n=2(3n-1)n= | | -864=2r | | 15x+12=3x+13 | | 33y=15 | | 6a-112=0 | | 5x(7x-3)=0 | | 1/3x-12=8 | | 5(2b-7)+8b=5(2b)-5(7)+8b | | −4(4x−2)+2x−5= −81 | | 6(x+3x)-4x=10 | |  1/2(3x-16)=4/5(x-3) | | 11w=8w=9 | | 3.3x-7=57 | | 3(4x-1)=2x | | 37=-9(w+9)+19 | | 3.3x=64 | | 7x^2-10)=(6x^2-3x) | | 11(b+18)–6(2b+1)=4(–b+9)b= | | 1/3x=64 | | 3(v-3)-4v=-12 | | p-5=-6 | | 1/3r-1/6=7/2 | | -50=7(p-2)-8 | | 2/5x+8/5=12/5 | | 5x+10x=20+5 | | 4y=9-y | | 5(u-4)-2u=16 | | x-0.75x=3.37 |

Equations solver categories